Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

Hi,

I’m having fun animating a beautiful geometric shape starting from a few trigonometric functions. I’m wondering if there’s a way to link each curve in the animation to its name.

restart

plots:-animatecurve([sin(x), sin(x)^2, sin(x)^3, sin(x)^4, sin(x)^5, sin(x)^6, surd(sin(x), 2), surd(sin(x), 3), surd(sin(x), 4), surd(sin(x), 5), surd(sin(x), 6)], x = 0 .. Pi, thickness = 2.5, background = "AliceBlue", labels = ["", ""], size = [800, 800])

 

plot([sin(x), sin(x)^2, sin(x)^3, sin(x)^4, sin(x)^5, sin(x)^6, surd(sin(x), 2), surd(sin(x), 3), surd(sin(x), 4), surd(sin(x), 5), surd(sin(x), 6)], x = 0 .. Pi, thickness = 2.5)

 

NULL

Download Animation_Trigo.mw

I recently upgraded from Maple 23 to Maple 24. While many display issues have been resolved, I’ve encountered a new real problem: when entering operations or a factorial in a denominator or exponent, the cursor unexpectedly jumps to the inline position. This forces me to manually reposition the cursor using backspace plus left-arrow keys, and forgetting to do so can lead to errors. I have a perpetual Maple license through my university and haven’t purchased maintenance this time. Is there any way to fix or work around this cursor-jumping issue in Maple 24 without purchasing a new license?

Already  by Help of my favorite Dr.David he did find the thus three step for non schrodinger equation but in here i got some issue of coding which is so different from before, is about transformation of pdes to two parts od real and imaginary part and then substitution our function the functions is clear but combining them and findinf leading exponent and resonance point and finding function in step 3 in different and jsut the function is different with eperate the real and imaginary part for finding step one ...

note:=q=u*exp(#) then |q|=u

schrodinger-test.mw

paper-1

paper-2

In the attached file, the trigonometric term (2, term) is transformed into a term (3, term1) consisting of radicals. Is there a Maple procedure that can be used to reverse this process? Given an algebraic term (e.g., consisting of radicals, powers, etc.), under what conditions can it be transformed into a trigonometric form (not a Fourier series) in the sense of (3) according to (2)?test.mw

 interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 11, October 29 2024 Build ID 1872373`

(1)

restart

term := 2*cos(5*arcsin((1/2)*x))

2*cos(5*arcsin((1/2)*x))

(2)

term1 := expand(term)

-3*(-x^2+4)^(1/2)*x^2+(-x^2+4)^(1/2)+(-x^2+4)^(1/2)*x^4

(3)

convert(term1, trig)

-3*(-x^2+4)^(1/2)*x^2+(-x^2+4)^(1/2)+(-x^2+4)^(1/2)*x^4

(4)

simplify(term1, trig)

(-x^2+4)^(1/2)*(x^4-3*x^2+1)

(5)

solve(term1 = sqrt(2), x)

(1/2)*(8-2*(10+2*5^(1/2))^(1/2))^(1/2), (1/2)*(8+2*(10-2*5^(1/2))^(1/2))^(1/2), (1/2)*(8+2*(10+2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8-2*(10+2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8+2*(10-2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8+2*(10+2*5^(1/2))^(1/2))^(1/2)

(6)

evalf(solve(term1 = sqrt(2), x))

.3128689302, 1.782013048, 1.975376681, -.3128689302, -1.782013048, -1.975376681

(7)

plot(term, x = -2.5 .. 2.5)

 

plot(term1, x = -2.5 .. 2.5)

 

NULL

Download test.mw

is been a while i work on a test still i am study and there is a lot paper remain and is so important in PDEs, a lot paper explain in 2003 untill know and there is other way to find it too but i choose a easy one but is 2025 paper  which is explanation is so beeter than other paper, also some people write a package for take out this test with a second but maybe is not work for all i  search for that  but i didn't find it i will ask the question how we can find thus as shown in graph i did my train but need a little help while i am collect more information and style of solving 

Download p1.mw

In thus manuscript i got some reviewer comment which is asked to simplify this expresion and there is a lot of them maybe if i do by hand i  made a mistake becuase a lot of variable so how i can fix this issue and make thus square root are very simple as they demand

restart

B[2] := 0

0

(1)

K := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(2)

simplify(K)

(1/2)*exp(I*((k*v+w)*tau^alpha+alpha*(k*xi+gamma))/alpha)*2^(3/4)*((lambda*(a[5]*(-lambda^2*B[1]^2+mu^2)/(lambda*a[4]))^(1/2)+(-B[1]*cosh(xi*(-lambda)^(1/2))*lambda-mu)*(lambda*a[5]/a[4])^(1/2)+sinh(xi*(-lambda)^(1/2))*lambda*(-a[5]/a[4])^(1/2)*(-lambda)^(1/2)*B[1])/(B[1]*cosh(xi*(-lambda)^(1/2))*lambda+mu))^(1/2)

(3)

subsindets(K, `&*`(rational, anything^(1/2)), proc (u) options operator, arrow; (u^2)^(1/2) end proc)

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(4)

latex(%)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

KK := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp((k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma)*I)

(5)

latex(KK)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

NULL

Download simplify.mw

i  can determine the pdes by one variable which is work so good but in some of the pdes i have two function i can separate by hand but how i can do by maple?

Download linear.mw

i did a lot of trail to avoid for find my parameter in the last step of that i get this `[Length of output exceeds limit of 1000000]` and i don't know how to fix it i need to find that parameter but when i do substitution  is said this there is any way for hundle this situation 

help-parameter.mw

My goal is to export images of curves where the output image has no background or equivalently, a fully transparent background. Is there a standard way to perform this task? I know that I can do this with the help of external software but I want to do it at the export stage in maple and avoid increasing the number of tools needed to perform the job. Eventually, I may want to generate many thousdands of curves/images with transparent backgrounds. 

Below I show how to make a plot while choosing a background with the color blue. I have found no way to select a fully transparent background. I expect this background transparency will be applied at the export image stage. 

how_do_I_plot_with_no_background.mw

To give an explicit example of what a plot with no background looks like, I make a plot in an unrelated software of a curve with no background. It's impossible to differentiate a white background from a transparent background in this environment, so we also show the same image embedded in an unrelated colored background also generated in an unrelated software.

In the image below, we can see how a image of a curve with a transparent background can be embedded over top of any other image without the blue square shown the the first example.

Hi,

I use Maple 2024 (X86 64 LINUX), and am trying to calculate the sum of the prime factors of integers.

My code is as simple as something like this:

SumPrimeFactors := proc(n)
    local f, L, p;
    f := ifactor(n);
    L := [op(f)];
    return add(convert(op(1, p), integer), p in L);  # Sum base primes
end proc:

However, the above code returns the following result when I set n = 360:

> SumPrimeFactors(360);
                                     5 +  (2) +  (3)

while what I had expected is just an integer, 10 (= 5+2+3).
It seems the operation convert(op(1, p), integer) is not working properly, and "(2)" is recognized as an expression, not an integer, even after the convert operation.

I have no idea how I should rectiy it.
I would be glad if someone gives me a way to get it solved.
Thank you very much.

For practice, I would like to solve the following problem. It is from "Steven Weinberg, Gravitation and Cosmology, p. 7" and was posed in a NG. I planned to define coordinates (x_i; y_i), apply the Pythagorean theorem, and enter the tediously long terms as term1 and term2, respectively. The final result should be term1-term2=0, or "is" should be used. I failed to enter the coordinates - the error message "error=Null" appears.

Question:
How are coordinates and their names of the type described meaningfully defined and entered as term1 and term2, respectively?

The four points P_1, P_2, P_3, P_4 lie in the Euclidean plane. Let
(ij) be the square of the distance between P_i and P_j. Then, it must be proven that

(12)(12)(34)+(13)(13)(24)+(14)(14)(23)+(23)(23)(14)
+(24)(24)(13)+(34)(34)(12)+(12)(23)(31)+(12)(24)(41)
+(13)(34)(41)+(23)(34)(42)
=
(12)(23)( 34)+(13)(32)(24)+(12)(24)(43)+(14)(42)(23)
+(13)(34)(42)+(14)(43)(32)+(23)(31)(14)+(21)(13)(34)
+(24)(41)(13)+(21)(14)(43)+(31)(12)(24)+(32)(21)(14)

I want to solve my PDE using Homotopy Perturbation Method. I have error while solving i dont know why it is showing error. If anyone knows the what mistake i have done in the code, kindly correct me. I want to find the equation of W(r,z) . dp/dz is a pressure terms which is independent of r. And the initial guess is taken as w0 := (-eta^2 + r^2)/2.  Help me to solve this.

 

 

restart;
PDEtools[declare](w(r, z));
               w(r, z) will now be displayed as w

N := 1;

w0 := (-eta^2 + r^2)/2:
w(r,z) := sum(p^i*w[i](r, z), i = 0 .. N)
                   w[0](r, z) + p w[1](r, z)

HPMEq := (1 - p)*diff(w(r, z), r $ 2) + p*(diff(w(r, z), r $ 2) + diff(w(r, z), r)/r - (1 + lambda)*(dp/dz + A2*M^2*w(r, z) + A1*w(r, z)/Da - m^2*UHS*BesselI(0, m*r)/BesselI(0, m*eta) + A3*sin(Phi))/A1);
                                                                /
                                                                |
        // d  / d            \\     / d  / d            \\\     |
(1 - p) ||--- |--- w[0](r, z)|| + p |--- |--- w[1](r, z)||| + p |
        \\ dr \ dr           //     \ dr \ dr           ///     \

  / d  / d            \\     / d  / d            \\
  |--- |--- w[0](r, z)|| + p |--- |--- w[1](r, z)||
  \ dr \ dr           //     \ dr \ dr           //

     / d            \     / d            \                       
     |--- w[0](r, z)| + p |--- w[1](r, z)|      /             /  
     \ dr           /     \ dr           /   1  |             |dp
   + ------------------------------------- - -- |(1 + lambda) |--
                       r                     A1 \             \dz

         2                            
   + A2 M  (w[0](r, z) + p w[1](r, z))

                                       2                    
     A1 (w[0](r, z) + p w[1](r, z))   m  UHS BesselI(0, m r)
   + ------------------------------ - ----------------------
                   Da                   BesselI(0, m eta)   

                  \
                \\|
                |||
   + A3 sin(Phi)|||
                ///


for i from 0 to N do
    equ[1][i] := coeff(HPMEq, p, i) = 0;
end do;
                     d  / d            \    
                    --- |--- w[0](r, z)| = 0
                     dr \ dr           /    

                           d                                   
                          --- w[0](r, z)      /             /  
 / d  / d            \\    dr              1  |             |dp
 |--- |--- w[1](r, z)|| + -------------- - -- |(1 + lambda) |--
 \ dr \ dr           //         r          A1 \             \dz

                                          2                    
          2              A1 w[0](r, z)   m  UHS BesselI(0, m r)
    + A2 M  w[0](r, z) + ------------- - ----------------------
                              Da           BesselI(0, m eta)   

                 \\    
                 ||    
    + A3 sin(Phi)|| = 0
                 //    


NULL;
cond[1][0] :=  D*w[0](0,z) = 0, w[0](eta,z) = 0;
for j to N do
    cond[1][j] := D*w[j](0,z) = 0,w[j](eta,z) = 0;
end do;
               D w[0](0, z) = 0, w[0](eta, z) = 0

               D w[1](0, z) = 0, w[1](eta, z) = 0


for i from 0 to N do
    dsolve({cond[1][i], equ[1][i]}, {w[i](r,z)});
    w[i](r,z) := rhs(%);
end do;
w(r,z) := evalf(simplify(sum(w[n](r,z), n = 0 .. N)));
convert(w(r,z), 'rational');
w(r,z) := subs(r = 0, w(r,z));
Error, invalid input: rhs expects 1 argument, but received 2
                    w[0](r, z) + w[1](r, z)

                    w[0](r, z) + w[1](r, z)

                    w[0](0, z) + w[1](0, z)


 

Hi

I'm trying to duplicate this graph in Maple. Any suggestions on how to place the textplot labels (n=0, n=1, etc.) to the right of 0.8, just like in the original graph?

how to place the textplot labels (n=0, n=1, etc.)

Thanks

S7MAA_Dveloppement_Limit.mw

Hi. how can i plot this function (FF) ?

restart

 

NULL

FF := evalf((5.00000*10^(-1))*sqrt(2.00000*10^0)*sqrt((-(2.86309*10^0)*P1-(1.66947*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.66947*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(4.83452*10^3+I*(9.71800*10^2))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(4.83452*10^3+I*(9.71800*10^2))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(4.83452*10^3-I*(9.71800*10^2))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.00000*10^(-200)-I*(1.00000*10^(-403)))*P1+(-7.80021*10^(-2750)-I*(3.11940*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(-(1.53846*10^5)*(-(6.46014*10^(-7))*P1+(-3.73229*10^(-7)-I*(7.69863*10^(-210)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.53846*10^5)*(-(1.51448*10^(-119))*P1+(-8.74976*10^(-120)-I*(1.80482*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(2.51785*10^0)*P1+(-6.25305*10^3+I*(3.19024*10^3))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-6.25305*10^3+I*(3.19024*10^3))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-6.25305*10^3-I*(3.19024*10^3))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(5.94458*10^(-2750)+I*(1.03769*10^(-2749)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-4.53057*10^(-1)-I*(9.34527*10^(-204)))*P1+(4.43548*10^4)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)+(4.43548*10^4)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(-1.53846*10^5-I*(3.36949*10^(-198)))*((-1.28153*10^(-7)-I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.20721*10^(-220)+I*(7.88859*10^(-221)))*((-4.28969*10^203+I*(2.49597*10^202))*P1+(6.35642*10^204)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((3.38241*10^(-22)+I*(3.05893*10^(-21)))*P1-(4.97664*10^(-21))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((-1.28153*10^(-7)+I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(-(1.53846*10^5)*(-(6.46014*10^(-7))*P1+(-3.73229*10^(-7)-I*(7.69863*10^(-210)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.53846*10^5)*(-(1.51448*10^(-119))*P1+(-8.74976*10^(-120)-I*(1.80482*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)-(3.45235*10^(-1))*P1-(1.22592*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.22592*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(-1.41853*10^3+I*(4.16204*10^3))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.41853*10^3+I*(4.16204*10^3))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5-I*(3.36949*10^(-198)))*((-1.28153*10^(-7)-I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.41853*10^3-I*(4.16204*10^3))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((-1.28153*10^(-7)+I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((3.38241*10^(-22)+I*(3.05893*10^(-21)))*P1-(4.97664*10^(-21))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.20721*10^(-220)+I*(7.88859*10^(-221)))*((-4.28969*10^203+I*(2.49597*10^202))*P1+(6.35642*10^204)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-4.53057*10^(-1)-I*(9.34527*10^(-204)))*P1+(-1.85563*10^(-2750)+I*(7.25748*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(6.00000*10^0)*(-(2.25126*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)+(2.25126*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(1.79100*10^3-I*(5.22310*10^2))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.79100*10^3+I*(5.22310*10^2))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.79100*10^3+I*(5.22310*10^2))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(2.06743*10^(-2750)+I*(2.41391*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0))-250)

.7071067810*((-2.86309*P1-166947.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)-166947.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(4834.52000+971.80000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(4834.52000+971.80000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(4834.52000-971.80000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-0.1000000000e-199-0.1000000000e-402*I)*P1+(-0.7800210000e-2749-0.3119400000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+(-153846.0000*(-0.6460140000e-6*P1+(-0.3732290000e-6-0.7698630000e-209*I)*P1)*exp(-.3241750000*x)-153846.0000*(-0.1514480000e-118*P1+(-0.8749760000e-119-0.1804820000e-321*I)*P1)*exp(.3241750000*x)+2.51785*P1+(-6253.05000+3190.24000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-6253.05000+3190.24000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-6253.05000-3190.24000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.5944580000e-2749+0.1037690000e-2748*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-.4530570000-0.9345270000e-203*I)*P1+44354.80000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)+44354.80000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(-153846.0000-0.3369490000e-197*I)*((-0.1281530000e-6-0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.1207210000e-219+0.7888590000e-220*I)*((-0.4289690000e204+0.2495970000e203*I)*P1+0.6356420000e205*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((0.3382410000e-21+0.3058930000e-20*I)*P1-0.4976640000e-20*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((-0.1281530000e-6+0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+(-153846.0000*(-0.6460140000e-6*P1+(-0.3732290000e-6-0.7698630000e-209*I)*P1)*exp(-.3241750000*x)-153846.0000*(-0.1514480000e-118*P1+(-0.8749760000e-119-0.1804820000e-321*I)*P1)*exp(.3241750000*x)-.3452350000*P1-122592.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)-122592.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(-1418.53000+4162.04000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-1418.53000+4162.04000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000-0.3369490000e-197*I)*((-0.1281530000e-6-0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-1418.53000-4162.04000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((-0.1281530000e-6+0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((0.3382410000e-21+0.3058930000e-20*I)*P1-0.4976640000e-20*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(0.1207210000e-219+0.7888590000e-220*I)*((-0.4289690000e204+0.2495970000e203*I)*P1+0.6356420000e205*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-.4530570000-0.9345270000e-203*I)*P1+(-0.1855630000e-2749+0.7257480000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+6.00000*(-225126.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)+225126.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(1791.00000-522.31000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-1791.00000+522.31000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(1791.00000+522.31000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.2067430000e-2749+0.2413910000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000)^(1/2)-250.

(1)

NULL

with(plots, implicitplot, complexplot)

[implicitplot, complexplot]

(2)

 

implicitplot(FF, x = 0 .. 200, P1 = 0 .. 800)

 

NULL

 

NULL

Download PLOT11.mw

In the attached file, I would like to determine the real part of the complex term2. I'm asking for your help.test.mw

restart

term1 := exp(I*t/2^k)

exp(I*t/2^k)

(1)

term2 := product(term1, k = 1 .. n)

(cos(2*t*(1/2)^(n+1))-I*sin(2*t*(1/2)^(n+1)))/(cos(t)-I*sin(t))

(2)

``

Download test.mw

1 2 3 4 5 6 7 Last Page 1 of 43